Endothelial FGF receptor signaling accelerates atherosclerosis.

نویسندگان

  • Jishan Che
  • Mitsuhiko Okigaki
  • Tomosaburo Takahashi
  • Asako Katsume
  • Yasushi Adachi
  • Shinichiro Yamaguchi
  • Shinsaku Matsunaga
  • Mitsuo Takeda
  • Akihiro Matsui
  • Eigo Kishita
  • Koji Ikeda
  • Hiroyuki Yamada
  • Hiroaki Matsubara
چکیده

Members of the fibroblast growth factor (FGF) family have been clinically applied to the treatment of ischemic diseases because of their strong angiogenic actions. Although tissue ischemia is predominantly caused by atherosclerosis, the roles of endothelial FGF receptors (FGF-Rs) in atherosclerosis remain obscure. We generated endothelial cell (EC)-targeted constitutively active FGF-R2-overexpressing mice, using the Tie2 promoter (Tie2-FGF-R2-Tg), and crossed them with apolipoprotein E (ApoE)-deficient mice (ApoE-KO) to generate Tie2-FGF-R2-Tg/ApoE-deficient mice (Tie2-FGF-R2-Tg/ApoE-KO). After being fed a Western diet for 8 wk, the Tie2-FGF-R2-Tg/ApoE-KO demonstrated 2.0-fold greater atherosclerotic lesion area on the luminal surfaces of the aortas than the ApoE-KO (P < 0.01). The level of p21(Cip1) protein, a cell cycle inhibitor, in the FGF-R2-overexpressing EC was 2.5-fold greater than that in the wild-type (WT) EC at the baseline (P < 0.01). FGF-R2 overexpression in the EC resulted in increased expression of VCAM-1 and ICAM-1, acceleration of apoptosis, and decreased proliferative activity, all of which were normalized by small interfering RNA (siRNA)-mediated knockdown of p21(Cip1) (75% reduction in protein level, P < 0.01). Furthermore, the expression of PDGF-B and Egr-1, a PDGF/p21(Cip1)-inducible transcription factor, in the aortic endothelium of Tie2-FGF-R2-Tg/ApoE-KO was significantly greater than that in ApoE-KO. The proliferation of vascular smooth muscle cells in the aortic media of Tie2-FGF-R2-Tg/ApoE-KO was 2.0-fold higher than that in ApoE-KO (P < 0.01). Thus our study reveals that endothelial FGF-R2 signaling aggravates atherosclerosis by promoting p21(Cip1)-mediated EC dysfunction and cautions against the use of FGF for therapeutic angiogenesis in the setting of atherosclerosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endothelial-to-mesenchymal transition drives atherosclerosis progression.

The molecular mechanisms responsible for the development and progression of atherosclerotic lesions have not been fully established. Here, we investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured human endothelial cells, both inflammatory cytokines and oscillatory shear stress reduced endothelia...

متن کامل

Insulin decreases atherosclerosis by inducing endothelin receptor B expression.

Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1) in the endothelia of Apoe-/- mice (Irs1/Apoe-/-) increased insulin signaling and function in the aorta. Atherosc...

متن کامل

Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain.

Angiogenesis, the sprouting of new blood vessels from pre-existing ones, is an essential physiological process in development, yet also plays a major role in the progression of human diseases such as diabetic retinopathy, atherosclerosis and cancer. The effects of the most potent angiogenic factors, vascular endothelial growth factor (VEGF), angiopoietin and fibroblast growth factor (FGF) are m...

متن کامل

Endothelial FGF receptor signaling: angiogenic versus atherogenic effects.

MEMBERS OF the fibroblast growth factor (FGF) family have been shown experimentally to stimulate angiogenesis through their mitotic and migratory effects on endothelial cells and by promoting endothelial integrity (2, 8). As such, they have been explored as a potential treatment of ischemic disease in several clinical trials (6). In their article in the issue of the American Journal of Physiolo...

متن کامل

Angiogenesis-dependent and independent phases of intimal hyperplasia.

BACKGROUND Neointimal vascular smooth muscle cell (VSMC) proliferation is a primary cause of occlusive vascular disease, including atherosclerosis, restenosis after percutaneous interventions, and bypass graft stenosis. Angiogenesis is implicated in the progression of early atheromatous lesions in animal models, but its role in neointimal VSMC proliferation is undefined. Because percutaneous co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 300 1  شماره 

صفحات  -

تاریخ انتشار 2011